One-step Synthesis of 8-Chloroflavins by the Cyclization of 5-Nitro-6-(Nsubstituted-anilino)uracils with the Vilsmeier Reagent. Vilsmeier **Reagent as a Reducing Agent**

By FUMIO YONEDA,* YOSHIHARU SAKUMA, and KAZUO SHINOZUKA

(Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan)

Summary Treatment of 5-nitro-6-(N-substituted-anilino)uracils with the Vilsmeier reagent (dimethylformamidephosphorus trichloride oxide) gave the corresponding 8-chloroflavins; the Vilsmeier reagent acted as a reducing agent as well as a dehydrating and chlorinating agent.

WE report a new approach to flavins which is widely applicable and especially convenient for the synthesis of 8-chloroflavins. This route consists of treatment of 5nitro-6-(N-substituted-anilino)uracils1,2 with the Vilsmeier reagent [dimethylformamide (DMF)-POCl₃].

For example, heating the uracil (Ia) (2 mmol) with dimethylformamide (30 mmol) and POCl₃ (4 mmol) at 90 °C for 1 h, followed by dilution with water, caused the separation of the isoalloxazine (IIa) in 73% yield and in a high state of purity. The product was identical in all respects with an authentic sample prepared by the condensation of 6-methylamino-3-methyluracil with 4-chloronitrosobenzene in acetic anhydride.3 Similarly, heating other uracils (Ib--e) with DMF-POCl₃ led to the formation of the respective 8-chloroflavins (IIb-e) (Table).

TABLE. 8-Chloroflavin formation by the reaction of 5-nitro-6-(N-substituted-anilino)uracils with the Vilsmeier reagent

Starting material	8-Chloroflavin	M.p./°C	Yield/%
(Ia)	(IIa) ^a	> 330	73
(Ib)	(IIb)	321	71
(Ic)	(IIc)	279	72
(Id)	(IId)	267	56
(Ie)	(IIe)	> 330	88
^a Ref. 3.			

The conversion of (I) into (II) probably involves the initial formation of the flavin 5-oxides (III)³ by dehydrative cyclization of (I), followed by subsequent chlorination on the 8-position of (III) and loss of the N-oxide group. In fact, treatment of (IIIa and b), prepared alternatively,³ with DMF-POCl₃ gave (IIa and b) in 80 and 78% yields respectively, while the flavins (IIi and j) themselves did not react, starting materials being recovered. Nucleophilic chlorinations of aromatic N-oxides with loss of the N-oxide group have been reviewed;4 many heterocyclic N-oxides have been converted into the corresponding chloro-heterocycles, mainly using POCl₃. However, the conversion of (I) or (III) into (II) required the Vilsmeier reagent; POCl, alone was not effective even under more drastic conditions, starting materials being recovered.

When the anilino-group of the starting materials (I) possessed a *para*-substituent, chlorination of the initially formed (III) was prevented because of steric hindrance and only loss of the N-oxide group took place. For example, treatment of the N-ethyl-p-toluidino-compound (If) with

DMF-POCl₃ under the same conditions gave the isoalloxazine (IIh). Furthermore, treatment of the 7-substituted flavin 5-oxides (IIIc-e)[†] with DMF-POCl₃ at 90 °C for 10 min gave the corresponding flavins (IIf) (m.p. 314 °C, 91%), (IIg) (m.p. 288 °C, 80%), and (IIh) (m.p. 270 °C, 82%). It is interesting that the Vilsmeier reagent acts as a reducing agent.

We thank the Ministry of Education of Japan for financial support.

(Received, 29th June 1977; Com. 655.)

† These were prepared by the nitrosative cyclization of the corresponding 6-(N-substituted-anilino)uracils with sodium nitrite in acetic acid.

- ¹Y. Sakuma, T. Nagamatsu, and F. Yoneda, J.C.S. Chem. Comm., 1975, 977.
- ² F. Yoneda and Y. Sakuma, *Heterocycles*, 1977. 6, 25.
 ³ F. Yoneda, Y. Sakuma, M. Ichiba, and K. Shinomura, J. Amer. Chem. Soc., 1976, 98, 830.
- ⁴ A. R. Katritzky and J. M. Lagowski, 'Chemistry of Heterocyclic N-Oxides,' Academic Press, 1971, pp. 259-270.